Effects of long-term post-ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia
نویسندگان
چکیده
Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post‑ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22‑24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro‑Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post‑ischemic treadmill exercise. However, post‑ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein‑immunoreactive astrocytes and ionized calcium binding adaptor molecule 1‑immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia‑induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long‑term post‑ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia‑induced astrocyte and microglial activation in the aged hippocampus.
منابع مشابه
Positive Effects of Post-ischemic Forced Treadmill Training on Sensorimotor and Learning Outcomes Following Transient Global Cerebral Ischemia
ABSTRACT Background and objectives: Stroke is one of the leading causes of death and long-term acquired disability. It is of great importance to seek ways for improving motor, sensory, and cognitive function after stroke and brain injury. In this regard, therapeutic exercise is the most commonly used method of rehabilitation that can significantly reduce the severity of functional ...
متن کاملLong-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus After Ischemic Stroke.
BACKGROUND The positive correlation between therapeutic exercise and memory recovery in cases of ischemia has been extensively studied; however, long-term exercise begun after ischemic neuronal death as a chronic neurorestorative strategy has not yet been thoroughly examined. OBJECTIVE The purpose of this study is to investigate possible mechanisms by which exercise ameliorates ischemia-induc...
متن کاملEffect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury
Objective(s): In the present study, we investigated the effect of ischemic preconditioning (IPC) on c-myb immunoreactivity as well as neuronal damage/death after a subsequent lethal transient ischemia in gerbils. Materials and Methods: IPC was subjected to a 2 min sublethal ischemia and a lethal transient ischemia was given 5 min transient ischemia. The animals in all of the groups were given ...
متن کاملEffect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملNeuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کامل